Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Animals (Basel) ; 13(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958118

RESUMEN

Microplastics are a class of contaminants that pose a threat to aquatic biota, as they are easily found in aquatic ecosystems and can be ingested by a wide variety of organisms, such as fish. The lambari rosa (Astyanax altiparanae) is a microphage fish, which feeds on microscopic beings and particles, making it potentially susceptible to ingesting MPs discarded in the environment. In addition, this fish is of great economic and food importance, as it is used for human consumption. This study aimed to evaluate the accumulation and possible toxicological effects caused to lambari rosa (n = 450) by the ingestion of polyethylene (PE) and polyethylene terephthalate (PET) MPs, since the MPs of these polymers in the form of granules, fragments, and fibers are the most commonly reported in the aquatic environment. The parameters investigated here were the quantitative analysis of ingested MPs using microscopic and staining techniques, as well as the mortality rate, malformations/injuries, and impaired weight gain. At the end of the experiment, it was concluded that MPs from both polymers accumulated in the gastrointestinal tract of the lambari rosa, and that dietary exposure, especially to the PET polymer, was responsible for increasing the mortality rate in this species.

2.
Braz J Microbiol ; 54(3): 2319-2331, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37578738

RESUMEN

Sulfentrazone (STZ) is an efficient tool for the pre- and post-emergence control of monocotyledonous and dicotyledonous weeds in fields of crops such as pineapple, coffee, sugarcane, citrus, eucalyptus, tobacco, and soybean. However, this herbicide persists in the soil, causing phytotoxicity in the subsequent crop. Therefore, it is important to use efficient strategies for the remediation of STZ-contaminated areas. The aim of this study was to evaluate the effects of Crotalaria juncea L. on the remediation of STZ-contaminated soil and on the microbial activity and bacterial community structure therein. The study was conducted in three stages: (i) cultivation of C. juncea in soil contaminated with 200, 400, and 800 g ha-1 STZ; (ii) determination of the soil microbial activity (basal respiration, microbial biomass carbon, and bacterial community structure); and (iii) cultivation of a bioindicator species and determination of the residual fraction of STZ. The soil microbial activity was impacted by the soil type and STZ dose. Soil previously cultivated with C. juncea (rhizospheric soil) displayed higher CO2 and lower qCO2 values than non-rhizospheric soil (no previous C. juncea cultivation). Increasing doses of STZ reduced the activity and lowered the diversity indices of the soil microorganisms. The bacterial community structure was segregated between the rhizospheric and non-rhizospheric soils. Regardless of soil type, the bioindicator of remediation (Pennisetum glaucum R.Br.) grew only at the STZ dose of 200 g ha-1, and the plant intoxication level was also lower in rhizospheric soil treated with this herbicide dose. All P. glaucum plants died in the soils treated with 400 and 800 g ha-1 STZ. Previous cultivation of C. juncea in soils contaminated with 200, 400, and 800 g ha-1 STZ reduced the residual fraction of the herbicide by 4.8%, 12.5%, and 17.4%, respectively, compared with that in the non-rhizospheric soils. In conclusion, previous cultivation with C. juncea promoted increases in the soil bacterial activity and diversity indices, mitigated the deleterious effects of STZ on the bioindicator crop, and reduced the residual fraction of the herbicide in the soil.


Asunto(s)
Crotalaria , Microbiología del Suelo , Sulfonamidas , Triazoles , Crotalaria/metabolismo , Biodegradación Ambiental , Sulfonamidas/metabolismo , Triazoles/metabolismo
3.
Environ Res ; 231(Pt 1): 116178, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201699

RESUMEN

Land use and management changes affect the composition and diversity of soil bacteria and fungi, which in turn may alter soil health and the provision of key ecological functions, such as pesticide degradation and soil detoxification. However, the extent to which these changes affect such services is still poorly understood in tropical agroecosystems. Our main goal was to evaluate how land-use (tilled versus no-tilled soil), soil management (N-fertilization), and microbial diversity depletion [tenfold (D1 = 10-1) and thousandfold (D3 = 10-3) dilutions] impacted soil enzyme activities (ß-glycosidase and acid phosphatase) involved in nutrient cycles and glyphosate mineralization. Soils were collected from a long-term experimental area (35 years) and compared to its native forest soil (NF). Glyphosate was selected due to its intensive use in agriculture worldwide and in the study area, as well as its recalcitrance in the environment by forming inner sphere complexes. Bacterial communities played a more important role than the fungi in glyphosate degradation. For this function, the role of microbial diversity was more critical than land use and soil management. Our study also revealed that conservation tillage systems, such as no-tillage, regardless of nitrogen fertilizer use, mitigates the negative effects of microbial diversity depletion, being more efficient and resilient regarding glyphosate degradation than conventional tillage systems. No-tilled soils also presented much higher ß-glycosidase and acid phosphatase activities as well as higher bacterial diversity indexes than those under conventional tillage. Consequently, conservation tillage is a key component for sustaining soil health and its functionality, providing critical ecosystem functions, such as soil detoxification in tropical agroecosystems.


Asunto(s)
Ecosistema , Suelo , Microbiología del Suelo , Agricultura , Bacterias/genética , Bacterias/metabolismo , Glifosato
4.
Bioresour Technol ; 376: 128842, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36898559

RESUMEN

This study investigates the impact of different agro-industrial organic wastes (i.e., sugarcane filter cake, poultry litter, and chicken manure) on the bacterial community and their relationship with physicochemical attributes during composting. Integrative analysis was performed by combining high-throughput sequencing and environmental data to decipher changes in the waste microbiome. The results revealed that animal-derived compost stabilized more carbon and mineralized a more organic nitrogen than vegetable-derived compost. Composting enhanced bacterial diversity and turned the bacterial community structure similar among all wastes, reducing Firmicutes abundance in animal-derived wastes. Potential biomarkers indicating compost maturation were Proteobacteria and Bacteroidota phyla, Chryseolinea genus and Rhizobiales order. The waste source influenced the final physicochemical attributes, whereas composting enhanced the complexity of the microbial community in the order of poultry litter > filter cake > chicken manure. Therefore, composted wastes, mainly the animal-derived ones, seem to present more sustainable attributes for agricultural use, despite their losses of C, N, and S.


Asunto(s)
Compostaje , Residuos Industriales , Animales , Residuos Industriales/análisis , Verduras , Suelo , Estiércol/microbiología , Bacterias , Nitrógeno/análisis , Aves de Corral , Pollos
5.
Sci Total Environ ; 827: 154239, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35245545

RESUMEN

Atrazine (ATZ) is one of the most widely used herbicides in the world even though it is classified as a carcinogenic endocrine disruptor. This study focused on how land use (grazing versus cultivation in parallel soils, the latter under no-till with a seven-year history of ATZ application) and bacterial community diversity affected ATZ dissipation. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes were the dominant phyla in both soils. The mineralization of ATZ was much higher in soils under cultivation up to the onset of moderate diversity depletion (dilution =10-3), corresponding to 44-52% of the amount applied (< 5% in the grazed soil). This was attributed to the higher diversity and complexity of the soils´ bacterial communities which consist of microbial groups that were more adapted as a result of previous exposure to ATZ. In these cases, ATZ dissipation was attributed mainly to mineralization (DT50 = 4-11 d). However, formation of non-extractable ATZ residues was exceptionally important in the other cases (DT50 = 17-44 d). The cultivated soils also presented a higher number of bacterial genera correlated with ATZ dissipation, in which Acidothermus, Aquicela, Arenimonas, Candidatus_Koribacter, Hirschia, MND1, Nitrospira, Occallatibacter, OM27_clade, and Ralstonia are suggested as potential ATZ-degraders. Finally, ATZ dissipation was mostly associated with an abundance of microbial functions related to energy supply and N-metabolism, suggesting co-metabolism is its first biodegradation step.


Asunto(s)
Atrazina , Contaminantes del Suelo , Atrazina/análisis , Bacterias/metabolismo , ARN Ribosómico 16S , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
7.
Environ Pollut ; 271: 116374, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33412451

RESUMEN

Antibiotic residues in the environment are concerning since results in dispersion of resistance genes. Their degradation is often closely related to microbial metabolism. However, the impacts of soil bacterial community on sulfadiazine (SDZ) dissipation remains unclear, mainly in tropical soils. Our main goals were to evaluate effects of long-term swine manure application on soil bacterial structure as well as effects of soil microbial diversity depletion on SDZ dissipation, using "extinction dilution approach" and 14C-SDZ. Manure application affected several soil attributes, such as pH, organic carbon (OC), and macronutrient contents as well as bacterial community structure and diversity. Even minor bacterial diversity depletion impacted SDZ mineralization and non-extractible residue (NER) formation rates, but NER recovered along 42 d likely due to soil diversity recovery. However, this period may be enough to spread resistance genes into the environment. Surprisingly, the non-manured natural soil (NS-S1) showed faster SDZ dissipation rate (DT90 = 2.0 versus 21 d) and had a great number of bacterial families involved in major SDZ dissipation pathways (mineralization and mainly NER), such as Isosphaeraceae, Ktedonobacteraceae, Acidobacteriaceae_(Subgroup_1), Micromonosporaceae, and Sphingobacteriaceae. This result is unique and contrasts our hypothesis that long-term manured soils would present adaptive advantages and, consequently, have higher SDZ dissipation rates. The literature suggests instantaneous chemical degradation of SDZ in acidic soils responsible to the fast formation of NER. Our results show that if chemical degradation happens, it is soon followed by microbial metabolism (biodegradation) performed by a pool of bacteria and the newly formed metabolites should favors NER formation since SDZ presented low sorption. It also showed that SDZ mineralization is a low redundancy function.


Asunto(s)
Contaminantes del Suelo , Sulfadiazina , Animales , Antibacterianos , Bacterias/genética , Biodegradación Ambiental , Estiércol , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Porcinos
8.
Microbiol Res ; 244: 126667, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33338969

RESUMEN

It is known that different plant species select specific microbes to live inside their tissues in a process determined by the host genotype, phenotype and geographic location, which can introduce discussion on plant endemism and the assembly of specific microbial communities. Herein, we report the results of an investigation relating the geographic distribution of plant species and the composition of microbial communities associated with plant hosts. The bacterial and fungal community associated with Anthurium plant leaves was mapped to assess the diversity and ecology of the endophytic community associated with Anthurium spp. collected on islands and on the Brazilian mainland. Twenty-six Anthurium specimens were surveyed, distributed throughout the São Paulo state coastline, including Alcatrazes Island, some coastal islands and distinct mainland environments. Bacterial and fungal endophytes were obtained from the leaves of A. alcatrazense, A. loefgrenii, A. penthaphyllum, A. urvellianum and A. intermedium and subjected to massive bacterial 16S rRNA and fungal ITS sequencing. The results indicated that A. alcatrazense, endemic to Alcatrazes Island, hosted a specific bacterial community structure, while its fungal community was similar to that of Anthurium species from other locations. Betaproteobacteria showed a high differential occurrence in A. alcatrazense. Some groups of fungi were found mainly inhabiting A. loefgrenii plants. While Alphaproteobacteria, Gammaproteobacteria, Actinobacteria and Sordariomycetes, Dothiodeomycetes and Tremellomycetes composed the core microbial community among Anthurium plants. The results suggest crucial role for the bacterial communities to endemic plants, while endophytic fungal diversity is less specifically distributed among endemic and nonendemic plant species.


Asunto(s)
Araceae/microbiología , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Microbiota , Micobioma , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Brasil , Hongos/clasificación , Hongos/genética , Hojas de la Planta/microbiología
9.
Arch Microbiol ; 202(5): 1085-1095, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32034425

RESUMEN

The current study aimed at the determination of the impact of obesity on the salivary microbiome in adolescents. Sixty subjects ranging 14-17 years old were enrolled (obese: n = 30-50% females, and normal weight: n = 30-50% females). Stimulated saliva was collected for denaturing gradient gel electrophoresis (DGGE) band patterns and massive 16S rRNA gene sequencing using the Ion Torrent platform. Overall, data analysis revealed that male subjects harbored a higher diverse salivary microbiome, defined by a significant higher richness (32.48 versus 26.74) and diversity (3.36 versus 3.20), higher Simpson values (0.96 versus 0.95) and distinct bacterial community structure considering either sex or condition (p < 0.05). Bacterial community fingerprinting analysis in human saliva showed a positive correlation with increased body mass index (BMI) in adolescents. Veillonella, Haemophilus and Prevotella occurrence was found to be affected by BMI, whereas Neisseria and Rothia occurrence was significantly impacted by sex in obese subjects. Our findings suggest that male and female adolescents may harbor a naturally distinct salivary microbiota and that obesity may specifically have an impact on their oral bacterial community. The potential dysbiotic oral microbiome in obese adolescents raises new insights on the etiology and prevention of future conditions in these populations.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota/genética , Obesidad/microbiología , Saliva/microbiología , Adolescente , Bacterias/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Femenino , Haemophilus/aislamiento & purificación , Humanos , Masculino , Micrococcaceae/aislamiento & purificación , Neisseria/aislamiento & purificación , Prevotella/aislamiento & purificación , ARN Ribosómico 16S/genética , Veillonella/aislamiento & purificación
10.
Sci Rep ; 7(1): 14646, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116120

RESUMEN

There are lack of studies regarding the effects of microbial diversity on specific soil functions, such as pesticides degradation. This study evaluated the role of bacterial community diversity and biochar on chlorothalonil (CTN) degradation, using 'dilution to extinction' approach, PCR-DGGE/16S rRNA gene technique, and radiorespirometry (14C-CTN). Biochar and microbial community dilution affected structure of the microbial community. In spite of that, CTN mineralization was slow, but dissipation was very fast (D50 < 1.0 d) due to immediate chemical degradation and formation of non-extractable (bound) residues. However, any depletion on soil microbial diversity strongly affected CTN mineralization, suggesting that this function is related to less abundant but specific microbial groups (CTN degraders) or to soil microbial diversity. The extent of these effects will strongly depend on the compound nature (recalcitrance) and soil matrix/substrate (bioavailability). It can be corroborated by the fact that biochar affected CTN sorption, its bioavailability, and subsequently its mineralization rate in the NS. These data indicate a strong relationship between soil microbial diversity and pesticide degradation, which is an acting form to mitigate xenobiotics accumulation in the environment.


Asunto(s)
Bacterias/clasificación , Bacterias/metabolismo , Biodegradación Ambiental , Fungicidas Industriales/metabolismo , Nitrilos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Bacterias/efectos de los fármacos , Biodiversidad , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...